
b.no��
v3.0.0

Developer Manual
(2024-06-25)

Description 2
Necessary equipment 2
Access to the sources of b.note 3
Connection to the b.note 3

With filezilla if the IP address of b.note is 192.168.1.10 3
In ssh 3

Enabling the development option 4
The development folder 4
Development on b.note without PycharmPE 5
Development on PC with PyCharmPE (Professional Edition) 5

Installation 5
Activation of the test license 6
Set up of ‘Python Interpreter’ 6

Editing bnote packages 13
Python package management 13
Linux library management 13
Running a bnote update 13

Structure of the application 14
The application 14

The keyboard events 14
Control keyboard 14
Braille keyboard 14
Routing cursor keyboard 15

Other events 15
Function 15
Timer 15

The refreshment of the braille display 16

© 2024 - Eurobraille sa 1 / 18



Standard objects 16
The menus 16
The dialogue boxes 17

Elements 17
Predefined dialogue boxes 17

Braille management 18
The key functions 18

Speech synthesis 18

Description
This manual describes how to develop a new application in b.note.

The internal applications of b.note are written in python 3 on a RaspberryPi 3 - A+ model.

The user interface of these applications has been written so new applications can be
developed quickly.
It gives access to :

- Menu bar,

- Dialogue boxes,

- A document zone leading to keyboard events and displays in braille,

- A speech synthesis.

Necessary equipment
- A personal computer that can support “Pycharm Professional Edition”,

- A b.note device,

- A WIFI connection.

Note :
The use of PycharmPE allows the setup of breakpoints, the visualization of variables and the
step-by-step on a program running on b.note (remote debugging). This is the least
convenient methodology of development.
However, it is possible to modify the source of the application directly on b.note without any
development tools.

© 2024 - Eurobraille sa 2 / 18



Access to the sources of b.note
The sources of b.note are the exclusive property of Eurobraille, a developer or a company
willing to develop a new application will have to ask Eurobraille that will provide all sources.

We would like to thank you for your interest in our product and if you develop an application
that can be used by the owners of a b.note device, we would be glad to incorporate this
application in the official version of b.note.

Connection to the b.note
In the preferences section of b.note, it is possible to set up a wifi connection, you will need to
know the SSID and the wifi password of the place where you are and refer to the user
manual of b.note.
b.note is configured to request an IP address from the DHCP server of the local network.
This address is visible in the preferences section of b.note (wifi section).

Once these steps are completed, b.note is accessible in ssh console or with filezilla for
example.
login : pi
password : euroberry

With filezilla if the IP address of b.note is 192.168.1.10

In ssh
$ssh pi@192.168.1.10
pi@192.168.1.10's password:

© 2024 - Eurobraille sa 3 / 18



Linux raspberrypi 5.10.63-v7+ #1488 SMP Thu Nov 18 16:14:44 GMT 2021 armv7l

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Wed Jan 12 09:54:12 2022 from 192.168.1.60
pi@raspberrypi:~ $

Enabling the development option
In the settings user interface section switch user interface to yes.
or
A development option allows you to switch b.note into development mode. To do this,
change /home/pi/.b.note/settings.txt file by replacing the line :
"system": {

"braille_type": "dot-8",
"games": false,
"developer": false
},

en :
"system": {

"braille_type": "dot-8",
"games": false,
"developer": true
},

After changing this parameter and restarting b.note :

- For example, an application named “Skeleton” can be found in the application menu

bar. This application shows how an application can manage its menus, its dialogue
boxes, its braille displays and its keyboard events. The first tests may be carried out
by modifying this application.

The development folder
To create a development environment independent of the bnote application installed on the
device, a develop/ folder is already created on the SD card. It contains a .tar.gz file with the
source code of the bnote application.

pi@raspberrypi:~/develop $tar -xvf bnote-3.0.0.tar.gz
pi@raspberrypi:~/develop $mv bnote-3.0.0 bnote
pi@raspberrypi:~/develop $cd bnote
pi@raspberrypi:~/develop/bnote $ sh ./setup.sh

© 2024 - Eurobraille sa 4 / 18



Development on b.note without PycharmPE
It is possible to modify the source files (.py) of b.note either locally in SSH with nano for
example or by copying the source folder in a system, then make the changes on that system
and finally by copying the modified folder on b.note.

Then you will need to restart the application:

Solution 1 : By rebooting the pi, if you are connected in SSH, do as follows:
pi@raspberrypi:~ $reboot

Solution 2 : By stopping the b.note service and manually launching the application :
Stop the application launch service :
pi@raspberrypi:~ $sudo systemctl stop b.note.service
Manually launch the application :
pi@raspberrypi:~ $cd b.note
pi@raspberrypi:~/b.note $python b.note_start.py
This second method has the advantage of having the traces of the application in SSH visible
on the console.

Development on PC with PyCharmPE
(Professional Edition)
Unlike the CE version (Community Edition), PyCharmPE will allow “remote debugging”. We
tested it under Ubuntu and Windows, and it exists also for Mac.
This version of PyCharm is licensed (There is a trial version limited to 30 days), the editor
JetBrain offers various subscription options including a monthly option.

Installation

- Download a version on https://www.jetbrains.com/pycharm/

- Under linux : Extract the tar.gz file and follow the instructions

- Under Windows : Launch the installer (.exe)

© 2024 - Eurobraille sa 5 / 18

https://www.jetbrains.com/pycharm/


Activation of the test license

Click Log in to JetBrains Account…

Set up of ‘Python Interpreter’
Click file>settings the open Project:b.note>Pythoninterpreter

© 2024 - Eurobraille sa 6 / 18



Then click on add interpreter>on SSH
type IP adress then username « pi »

click on next and type the password « euroberry »

© 2024 - Eurobraille sa 7 / 18



click next pycharm perform a conection test

click next then existing and det theVirtualENv Path to
home/pi/develop/bnote/venv/bin/python3

© 2024 - Eurobraille sa 8 / 18



click on the Sync folders to set up the path where the sources wil be synchronized with
Pycharm

© 2024 - Eurobraille sa 9 / 18



© 2024 - Eurobraille sa 10 / 18



Choose OK then Create

© 2024 - Eurobraille sa 11 / 18



Once these operations have been completed, you can right-click on the root bnote folder of
the project then choose Deployment>Upload to … to synchronize the sources of your bnote
development folder with those of pycharm.
You can then launch bnote_start.py from pycharm.

For more information, check this link :
https://www.jetbrains.com/help/pycharm/remote-debugging-with-product.html

© 2024 - Eurobraille sa 12 / 18

https://www.jetbrains.com/help/pycharm/remote-debugging-with-product.html


Editing bnote packages

Python package management
In ssh on bnote, from your development folder, you can type:
pi@raspberrypi:~/develop/bnote $ source venv/bin/activate
(venv)pi@raspberrypi:~/develop/bnote $pip install my_package

To retrieve the package and its dependencies you can use the following commands:
pi@raspberrypi:~/develop/bnote $mkdir -p /tmp/packages
pi@raspberrypi:~/develop/bnote $pip download --dest /tmp/packages requests
You can then download it and include it in the whl/ folder of your update and add its name
and version in pyproject.toml of your bnote project.

to remove a python package.
pi@raspberrypi:~/develop/bnote $pip uninstall my_package

Linux library management
In ssh on bnote, from your development folder, you can type:
pi@raspberrypi:~/develop/bnote $sudo apt install my_library
to add a library.
pi@raspberrypi:~/develop/bnote $sudo apt remove my_library
to remove a library.

When you perform the update, you will need to take library changes into account by updating
the libraries.txt file.
Each of the commands in this file will be executed when installing the new version of the
application. An error during these executions will result in a failure to install the version.
This file will continue to grow with updates.
Creation and execution of a bnote update
In ssh on develop/bnote, from your development folder type:
pi@raspberrypi:~/develop/bnote $sh./generate.sh
This will generate a bnote-....whl.zip file with the name of the bnote version defined in
pyproject.toml.

Running a bnote update
It is the bnote…whl.zip file which will allow the installation of the application. All you have to
do is copy it to the target bnote and run it from the bnote file explorer.

The new version will be installed in the all_bnotes folder with its own virtual environment.
It is therefore possible to have several versions of bnote coexist and choose the one that will
be launched at startup.

© 2024 - Eurobraille sa 13 / 18



Structure of the application
The source code is in the /home/pi/b.note folder.
The documents folder visible from the application can be found in /home/pi/.b.note

The application
All b.note applications come from a b.noteApp class located in the b.note_app.py file.
The menus, the dialogue boxes and the braille refresh mechanism of the app work thanks to
this basic class.

The keyboard events
The keyboard events have been categorized into 4 types that each match to a python
function of the application. They come and override the base class, therefore this is
important because they call for the functions of the base class as it is done in skeleton.py to
make sure the dialogue boxes and the menus work properly.

Control keyboard
Pressing one or more keys from the 2 keypads will trigger this following event :
def input_command(self, data, modifier, key_id) -> bool:

"""
Does what is expected for this command key.
:param data: ?
:param modifier: bits field (see Keyboard.BrailleModifier)
:param key_id: (see Keyboard.KeyId)
:return: True if command treated, otherwise False
"""

Note : An event with key_id = Keyboard.KeyId.KEY_NONE is generated when all
keys are released. It must be ignored for all applications of
b.note.

Braille keyboard
The key combinations of the braille keyboard are divided into 2 categories :

- Combinaisons leading to alphanumeric character (input_character())

- Combinaisons leading to a function (input_bramigraph())

def input_character(self, modifier, character, data) -> bool:
"""
Do what needs to be done for this braille modifier and character.
:param modifier: bits field (see Keyboard.BrailleModifier)
:param character: unicode char
:param data: brut braille comb. for advanced treatment
:return: True if command treated, otherwise False
"""

© 2024 - Eurobraille sa 14 / 18



def input_bramigraph(self, modifier, bramigraph) -> bool:
"""
Do what needs to be done for this modifier and bramigraph.
:param modifier: bits field (see Keyboard.BrailleModifier)
:param bramigraph: braille function (see

Keyboard.BrailleFunction)
:return: True if command treated, otherwise False
"""

Routing cursor keyboard
Pressing a routing cursor key called interactive key in b.note will trigger this following
function :
def input_interactive(self, modifier, position, key_type) -> bool:

"""
Do what needs to be done for this modifier and cursor routine

event.
:param modifier: bits field (see Keyboard.BrailleModifier)
:param position: index of key (based 1)
:param key_type: see Keyboard.InteractiveKeyType
:return: True if command treated, otherwise False
"""

Other events

Function
If the application uses the multi-task mode, it may need to trigger functions that will be taken
into account by the main process, these events will trigger the following function :
def input_function(self, *args, **kwargs) -> bool:

"""
Call when function is not treated by base class of this class.
:param args[0]: The function id
:param kwargs:
:return: True if function treated.
"""

In order to trigger a function, you must type :
self._put_in_function_queue(FunctionId.FUNCTION_…)

Timer
A timer event occurs every second
def on_timer(self):

"""
Event each seconds
:return: None
"""

© 2024 - Eurobraille sa 15 / 18



The refreshment of the braille display
A single function allows to display a line of text on the braille display
def set_data_line(self):

"""
Construct the braille display line from document
:return: None (self._braille_display.set_data_line is done)
"""

Usually, this function allows the line of the document from the application to be sent to the
braille display.
The coding of this function consists of building 3 buffers of alphanumeric text (for esyviewer
for example)

- A unicode braille buffer describing the fixed points

- A unicode braille buffer describing the blinking points

then name self._braille_display.set_data_line with those 3 buffers as parameters.

Standard objects

The menus
The menus are generated by 2 classes of folder ui :

- UiMenuBar The menu bar and a submenu

- UiMenuItem An item from terminal menu

A UiMenuBar is specified by :
'name': the name of submenu,
'action': (None by default) A function of the application,
'ui_objects': A list describing its content, it will be made of
UiMenubar and UiMenuItem,
'is_root': (False by default) this Boolean will allow to mark the
root element of the menu description,
'focused_object': 0

A UiMenuItem is specified by :
'name': the name of the menu item,
'shortcut_modifier': the keyboard shortcut modifiers associated to
this element,
'shortcut_key': the description of the shortcut key,
'action': Each element of the terminal menu is associated to a
function from the application called convention
def _exec_menu_nom_de_la_fonction(self),
'action_param': (None by default) This parameter enables the

© 2024 - Eurobraille sa 16 / 18



specification of the settings to be carried out once the action is
launched,
'is_hide': (False by default) Hiding the menu item,

Example for creating a menu :
def __create_menu(self):

# Instantiate menu (A menu bar with 1 sub menu of 2 menu items and one menu
item).

return UiMenuBar(
name=_("skeleton"),
# Call on ESC bramigraph key
is_root=True,
menu_item_list=[

UiMenuBar(
name=_("&group"),
menu_item_list=[

UiMenuItem(name=_("&menu_1"), action=self._exec_menu_1),
UiMenuItem(name=_("&menu_2"), action=self._exec_menu_2),

]),
UiMenuItem(name=_("&say hello"), action=self._exec_say_hello),
UiMenuItem(name=_("&about"), action=self._exec_about,

shortcut_modifier=Keyboard.BrailleModifier.BRAILLE_FLAG_NONE,
shortcut_key = Keyboard.BrailleFunction.BRAMIGRAPH_F1),

],
)

The dialogue boxes

Elements
The dialogue boxes are managed by the classes of the following ui folder :

- UiDialogBox The dialogue box

- UiCheckBox A checkbox

- UiListBox A list box

- UiEditBox An editable box

- UiLabel A text that can not be modified

- UiButton A button

Predefined dialogue boxes
Some standard dialogue boxes are already defined in order to globalize boxes of general
use and spare the applications code. They correspond to the following classes :

- UiMessageDialogBox A dialogue box that includes a name, a

message and a list of button,

- UiInfoDialogBox An information dialogue box that includes a

© 2024 - Eurobraille sa 17 / 18



message and an OK button,

Braille management
The braille is managed by a global class b.noteApp.lou that corresponds with an instance of
liblouis in the language used for the device.

The key functions

def to_dots_8(self, txt):
"""
Convert a string into an unicode braille string (8 dots) (x28nn chars).
: param txt : (str) alphanumeric string of text
: return : (str) unicode braille string (\u28xx...)
"""

This function converts a text into a braille character line. This is the only useful function for
an application in 8-dot computer braille mode. It will convert the line to the braille display.

Speech synthesis
b.note has a global entry point to enable speech synthesis.

def speak(text, lang_id=None, volume=None, speed=None,
purge_before_speak=True):

In order to get an advanced use of the speech synthesis, it will be necessary to interface
directly to the class SpeechManager().

© 2024 - Eurobraille sa 18 / 18


